To assess the condition of railroad networks, railroad operators gather various data simultaneously. In order to easily find the defective sections, maintenance teams need precise information on their location. The Laser Pole Detection System LPS by Fraunhofer IPM yields exactly this information, thus complementing GNSS data.

To ensure targeted condition monitoring and maintenance of the rail network, rail operators measure the wire’s position and wear, the condition of tracks and the contact force of pantographs. Precise location information is needed for maintenance teams to find the defective sections identified. The LPS yields exactly this information, in addition to GNSS (Global Navigation Satellite System) with potential local coverage problems.

Locating defective sections

A defective section can be located through the two poles confining it. The LPS detects the catenary wire support structure along the tracks continuously and thus complements other measurement data by a precise location of the poles.

A laser distance measurement system forms the core of the LPS: The light of a high-frequency modulated laser beam is reflected by objects and collected by a lens onto a detector. The phase of the detected signal differs from the emitted signal due to the light’s time of flight. From this phase shift the distance to the object is deduced.

The LPS consists of two acquisition units mounted side by side on the inspection car’s rooftop. Each unit comprises two distance measurement systems with the beams directed vertically upwards. The system records a pole if both laser beams of an acquisition unit are reflected simultaneously. This two-fold reflection is the result of the pole’s anchor arms, side holders or cantilevers. In addition, the two sensors determine the distance to
distinguish such objects from others further above. The values are digitized and transmitted as serial data flow to the data processing unit inside the car.

Optimized housing design

The LPS does not require daylight, carrying out measurements in tunnels, under bridges and in train stations without additional lighting. The system is fully encased and actively kept at a specific temperature to minimize climatic effects. The glass window’s cleaning is controlled from inside the inspection car. The sensor is protected by a pneumatically activated cover in case of extremely rough weather or during parking. Thus, the system does not require any maintenance over long periods.

Technical specifications

<table>
<thead>
<tr>
<th>Specification</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measurement method</td>
<td>Laser distance measurement</td>
</tr>
<tr>
<td>Measurement range</td>
<td>0.5 – 4 m</td>
</tr>
<tr>
<td>Diameters detected</td>
<td>12 – 200 mm</td>
</tr>
<tr>
<td>Measurement rate</td>
<td>> 62,000 measurements per second</td>
</tr>
<tr>
<td>Vehicle velocity range</td>
<td>5 – 260 km/h</td>
</tr>
<tr>
<td>Application area</td>
<td>Open sky, bridges, tunnels, regular catenary or conductor rails</td>
</tr>
<tr>
<td>Ambient temperature</td>
<td>–20 °C to +50 °C (in operation) –20 °C to +70 °C (in storage)</td>
</tr>
<tr>
<td>Laser class</td>
<td>III R</td>
</tr>
<tr>
<td>Eye safety</td>
<td>Laser is automatically switched off at speeds below 5 km/h</td>
</tr>
</tbody>
</table>

All specifications and features are subject to modification without notice.

Operation

The LPS is available as a standalone device or as part of the Contact Wire Inspection System CIS. The CIS multi-sensor system combines measurement technology for wire wear and wire position.

The LPS has been in operation in many countries all over the world, among them Austria, Belgium, Brazil, Finland, Great Britain, Hong Kong, Malaysia, The Netherlands and Romania.

Contact

Prof. Dr. Alexander Reiterer
Head of Department
Object and Shape Detection
Phone +49 761 8857-183
alexander.reiterer@ipm.fraunhofer.de

Dr. Philipp von Olshausen
Group Manager Mobile Terrestrial Scanning
Phone +49 761 8857-289
philipp.olshausen@ipm.fraunhofer.de

Fraunhofer Institute for Physical Measurement Techniques IPM
Georges-Köhler-Allee 301
79110 Freiburg, Germany
www.ipm.fraunhofer.de/railway