Converting waste heat energy into electricity, this is what Fraunhofer IPM achieves with the aid of thermoelectric generators (TEG): In future, thermoelectric energy harvesting will play a key role in making more efficient use of energy in power plants, industrial processes or automobiles. Fraunhofer IPM produces thermoelectric bulk parts as well as complete modules and generators. These are based on:

- Skutterudites
- Half-Heusler compounds
- Bismuth tellurides or
- Silicides

Modules and generators are adapted to the individual application with the help of full thermoelectric simulations. The requirements for thermally and electrically well matched modules are realized in modules up to a surface area of 3.2 x 3.2 cm².

Usually, thermoelectric modules are connected by application of mechanical pressure onto the heat exchanger. Fraunhofer IPM offers expertise in integrating thermoelectric modules into the custom-tailored system. This enables a better coupling and transport of heat fluxes.

The development of electrical contacts with low ohmic resistance as well as thermal coupling suitable for high temperatures represents a key competence of Fraunhofer IPM.
Bulk materials: processing techniques

Pulse electric current sintering (PECS, also SPS)
- Diameter sinter body 10 – 20 mm
- Mechanical force up to 2 – 50 kN
- Variety of inert gases and vacuum
- Sinter temperature up to 2,200°C

Polishing
- Minimum material thickness down to 200 µm depending on material class

Separation
- Wire saw, cutting wheel
- Aspect ratios 1:3 possible with edge length down to 1 mm

Application of diffusion barriers

Diffusion barriers are applied in order to prevent electrical contacts and the thermoelectric materials from chemical degradation. Fraunhofer IPM utilizes several techniques for the application of diffusion barriers optimized for the specific material classes.

Physical vapor deposition (e.g. sputtering)
- Typical diffusion barrier materials such as Ni, Ti, Au
- Homogeneity of layer thickness of +/- 2 % possible for diameters of up to 145 mm

Electroplating
- Deposition of metal layers and even thermoelectric layers such as bismuth telluride and bismuth antimon telluride are possible

Our offer

- Optimization and processing of functional materials
- Development of diffusion barriers and contact technologies
- Material and module characterization
- Fabrication of custom-tailored thermoelectric components
- Development of prototype systems
- Feasibility studies

Planar modules developed at Fraunhofer IPM (examples)

<table>
<thead>
<tr>
<th>Material class</th>
<th>Max. operation temp.</th>
<th>Efficiency*</th>
<th>ΔT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Skutterudites</td>
<td>450°C</td>
<td>7%</td>
<td>430 K</td>
</tr>
<tr>
<td>Half-Heusler</td>
<td>550°C</td>
<td>5.4%</td>
<td>530 K</td>
</tr>
<tr>
<td>Silicides</td>
<td>500°C</td>
<td>5.0%</td>
<td>480 K</td>
</tr>
<tr>
<td>Bi₂Te₃</td>
<td>200°C</td>
<td>4.2%</td>
<td>180 K</td>
</tr>
</tbody>
</table>

* for maximum operation temperature and 20°C cold side temperature, estimated by measurements and full thermoelectric simulation.